

Town of Clyde Park
Public Meeting – Water System Improvements / Preliminary Engineering Report
November 12, 2025 @ 7:01 p.m., Clyde Park Town Hall & via Zoom

Call to Order: Mayor Sydney Wiley called the public meeting to order at **7:01 p.m.**

Purpose of Meeting: Mayor Wiley stated the purpose of the meeting was to receive a presentation from **Great West Engineering** on the **Water System Improvements Preliminary Engineering Report (PER)** and to take public comment. The PER will serve as a 20-year planning document and is required for state and federal funding applications.

Introductions

- Great West Engineering: Jesse Novak, Project Engineer and Craig Erickson, Funding Specialist
- Town Officials: Mayor Sydney Wiley, Council Members: James Walsh, Dave Sarrazin, Teresa Saari, Brian Eckenrod, Roger Chandler
- Staff: Stacy Mills, Clerk/Treasurer (via Zoom); Louann Barr, Deputy Clerk; Bo Danysh, CSO/Water Operator
- Members of the public were present in person and online; full list on the sign-in sheet and Zoom record.

Engineer's Presentation – System Overview & Findings

Water Sources & Supply

- Clyde Park's primary source is a gravity-fed spring system feeding a series of spring boxes north of town. Water flows by transmission main to the storage reservoir and then to town.
- Historical flows from the spring system have been 100–140 gpm recently, with historic peaks reported around 200 gpm.
- The Town also has Well #1 (\approx 60 gpm) and Well #2 (\approx 55 gpm) as secondary/redundant sources to meet DEQ requirements (ability to meet maximum day demand with largest source offline).

Population & Planning Horizon

- Current service population: \approx 351 residents within city limits.
- PER uses a 20-yr planning with 1% annual growth, projecting about 420–431 residents by 2045.
- System must be capable of meeting future demand at that population.

Water Use & Unaccounted-for Water Loss

- Pre-June 2025 average day demand into town (spring + wells):
 - \approx 132,000 gallons per day (\approx 91.9 gpm).
 - Calculated as \approx 377 gallons per capita per day (gpcd) – unusually high.
 - Billed/metered usage during that same period: \approx 24,166 gpd (\approx 16.7 gpm).
- This implies very high water loss, estimated at \approx 82% of water entering the system.
- In June 2025 a major 6" cast-iron main break on Main Street near the Post Office was discovered and repaired. After that repair:
 - Average day demand dropped to \approx 83,000 gpd, and
 - Per-capita use dropped to \approx 237 gpcd.
- The engineer concluded that leaks in aging metal mains (especially cast iron) are responsible for a large portion of the unaccounted-for water.

Distribution System

- Approximately 33,000 feet of water main in town.
- Roughly 19,000 feet are older cast iron or ductile iron pipe, including:
 - A 6" cast-iron main along Main Street and up through portions of town.
 - Multiple 4" cast-iron/ductile mains which are now undersized and do not meet fire flow requirements.
- Cast iron is prone to corrosion and leaks; the break on Main Street is likely indicative of broader pipe deterioration.
- 4" mains are no longer acceptable for municipal distribution where fire flows must meet IFC standards.

Storage

- The town has a 350,000-gallon storage reservoir built in 2008, in good condition per inspection and dive reports.
- DEQ storage requirement is: Fire Flow + Average Day Demand.
- With pre-June 2025 loss numbers, required storage was calculated higher than 350,000 gallons, suggesting apparent under-capacity on paper.
- With reduced water loss, the existing tank appears adequate for both fire flow and average day **demand** now and into the 20-year planning horizon.
- There is also an old 175,000-gallon tank footprint on city property near the existing reservoir which could support a future second tank if ever needed.

Water Quality / Treatment

- Springs are classified as groundwater, which greatly reduces required treatment compared to surface water.
- Current treatment is chlorination only at:
 - the spring line as it enters the tank, and
 - the well house when wells are operating.
- The system is generally in compliance with federal and state drinking water standards.
- There have been some monitoring violations in the past, but no ongoing quality violations.
- Nitrate levels in the spring area are elevated but safely below the MCL (10 mg/L), currently around 3–5 mg/L. This may be influenced by nearby agriculture and septic systems but is not presently a health concern; it should be monitored.

Alternatives & Recommended Projects

Jesse described the PER's Alternatives Analysis, divided into Supply, Storage, and Distribution.

Supply Alternatives

- **S1 – No Action.**
- **S2 – Protect spring source and transmission main**
 - Replace aging cast-iron transmission main from spring boxes to reservoir.
 - Add valves and controls at springs to better regulate flows.
 - Approximate capital cost: ≈\$1.28 million.
- **S3 – Identify and drill new wells**
 - Considered if nitrate or other issues arise with existing sources.

Storage Alternatives

- **R1 – No Action.**
- **R2 – New 175,000-gallon storage tank** at the old tank footprint to increase storage and redundancy if needed.

Distribution Alternatives

- **D1 – No Action.**
- **D2 – Leak Detection program**
 - Acoustic leak detection on hydrants and key locations to identify spot leaks.
- **D3 – Replace 6" cast-iron mains** (Main Street and associated segments)
 - Approx. 3,500 linear feet.
 - Includes MDT permitting, road repair, hydrant replacement where needed, new services/meters as warranted.
 - Approximate capital cost: ≈\$1.8 million.
- **D4 – Replace 4" cast-iron/ductile mains** (undersized lines)
 - Bring lines up to 6" or larger to meet fire flow, reduce leaks, and improve insurance ratings.
 - Approximate capital cost: ≈\$1.23 million.
- **D5 – Systematic water meter replacement**
 - Meters have roughly 20-year life cycle; older meters are less accurate and can under-register usage.

Alternatives Selected for Further Evaluation in PER

After discussion with Town staff and officials, the PER focuses further analysis on:

- **S2 – Spring source protection & transmission main replacement**
- **D3 & D4 – Replacement of all remaining metal distribution pipe (6" and 4")**

Funding & Affordability

Median Household Income (MHI) & Target Rate

- Funding agencies use MHI and a “target rate” to gauge affordability.
- For Clyde Park, the target rate calculation indicates an affordable average water bill ≈ \$67.45/month.
- Current average residential water bill was reported around \$87.04/month, which positions the Town for strong grant eligibility.

Grant and Loan Programs Discussed

- **Grants:**
 - **MCEP**
 - **Renewable Resource Grant & Loan (RRGL)**
 - **Community Development Block Grant (CDBG)** – requires >51% Low/Moderate Income (LMI).
- **Loan Programs:**
 - **DEQ State Revolving Fund (SRF)** – example discussed: ≈2.5% interest, 20-year term, with some potential principal forgiveness.

- **USDA Rural Development (RD)** – example discussed: ≈3% interest, 40-year term, but Craig noted this rate changes quarterly and may decrease; RD had been partially shut down during the federal budget impasse.

Scenario Examples (Rough Estimates)

- If all metal pipe (D3 + D4) is replaced (~\$3 million total project cost):
 - Potential grants:
 - MCEP grant – approx. **\$625,000**
 - RRGL grant – approx. **\$125,000**
 - CDBG grant – approx. **\$750,000**
 - With SRF loan and possible forgiveness, remaining loan balance was estimated around **\$781,000**, with additional local match/cash contribution still to be determined by DNRC policy.
 - Roughly associated **monthly rate increases in the range of \$5–\$7/month** were discussed, depending on grant success and loan terms.
- If only the **6" cast-iron mains (D3)** are replaced (~\$1.8 million project):
 - With similar grants but lower capital cost, estimated rate increase could be in the **\$1–\$5/month range**, depending on whether CDBG or other grants are awarded.

Local Matching Funds / “Skin in the Game”

- Craig explained that recent legislative changes (HB 6) require communities to have **cash match** (not loans) to score well and access **RRGL funds**.
- DNRC is still finalizing the scoring system; communities contributing more cash may receive more points.
- Local philanthropy and private donations were discussed as a potential source of match.

Environmental Review

- As part of the PER, Great West is completing an Environmental Assessment.
- Letters have been sent to roughly 20 agencies and entities (MDT, DEQ, DNRC, SHPO, Fish/Wildlife, etc.) regarding the contemplated projects (spring main, storage, and distribution replacements).
- Responses to date have not identified significant concerns; MDT has noted right-of-way issues for work within Highway 89/Main Street.

Public Comment & Questions

Key issues raised and responses given included:

- **Leak Detection vs. Pipe Replacement**
 - Council Member Brian Eckenrod and others asked whether it made sense to continue spending time and money on leak detection equipment vs. directly replacing known problem pipelines.
 - Jesse stated that leak detection can be helpful in large cities (e.g., Missoula) where full replacement isn't feasible, but in Clyde Park's small system—with a clear pattern of failures in the remaining metal mains—he believes the most prudent long-term approach is replacement of those mains, rather than continuing to “chase leaks” in cast iron.
- **Meters & Revenue**

- Discussion occurred on whether replacing aging meters would increase billed usage and thus generate more revenue to help fund projects.
- Craig stated other communities have seen revenues increase after replacing old meters because under-registration is common.
- Jesse noted meters within the distribution project areas have already been included in the cost estimates; for additional meter work, he suggested adding annual meter replacement (e.g., 5% per year) into the Town's Capital Improvement Plan (CIP).
- **Cash Match & Philanthropy**
 - **Shaun Jones** suggested tapping local philanthropic ranch/family interests to help cover match requirements and reduce the burden on ratepayers.
 - Craig and the Mayor both agreed that private contributions could be a powerful story and are feasible; Craig cited examples of senior centers where community donations eliminated loan needs.
- **Spring-to-Reservoir Losses & Treatment Costs**
 - Zach (online) asked whether the transmission main from the springs to the reservoir had measured losses and what cost savings might be realized by not treating "lost" water.
 - Jesse stated the first metering point is just north of the reservoir; there may be some loss in that main, but it likely does not account for most of the 80% unaccounted-for water.
 - Bo and Jesse noted chlorination chemical costs are relatively modest (~\$164/month); reduced leakage would save some money but the key driver is system integrity and capacity rather than chemical cost alone.
- **General Affordability**
 - Craig both emphasized that delaying needed improvements typically results in much higher costs later, citing other Montana communities where multi-million-dollar projects quadrupled in cost over 20 years of delay.
- **Follow-up Contact**
 - Jesse offered to leave business cards so that council members or residents could contact him with questions after the meeting.

Adjournment of PER Public Meeting

With no further questions, Mayor Wiley thanked **Great West Engineering** for the presentation and the public for attending. She announced a short break before the water rate public hearing.

The PER public meeting ended and the total council meeting adjourned briefly for a recess.